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In this paper, we describe homology modeling of the alpha1A receptor based on the X-ray
structure of bovine rhodopsin. The protein model has been generated by applying ligand-
supported homology modeling, using mutational and ligand SAR data to guide the protein
modeling procedure. We performed a virtual screening of the company’s compound collection
to test how well this model is suited to identify alpha1A antagonists. We applied a hierarchical
virtual screening procedure guided by 2D filters and three-dimensional pharmacophore models.
The ca. 23 000 filtered compounds were docked into the alpha1A homology model with GOLD
and scored with PMF. From the top-ranked compounds, 80 diverse compounds were tested in
a radioligand displacement assay. 37 compounds revealed Ki values better than 10 µM; the
most active compound binds with 1.4 nM to the alpha1A receptor. Our findings suggest that
rhodopsin-based homology models may be used as the structural basis for GPCR lead finding
and compound optimization.

Introduction

G-protein coupled receptors (GPCRs) form a large
protein family that plays an important role in many
physiological and pathophysiological processes. Histori-
cally, the discovery of drugs acting at GPCRs has been
extremely successful with 50% of all recently launched
drugs targeting against GPCRs.1 Especially the subfam-
ily of biogenic amine binding GPCRs has provided
excellent targets (given in brackets) for the treatment
of several CNS diseases such as schizophrenia (mixed
D2/D1/5-HT2), psychosis (mixed D2/5-HT2A), depres-
sion (5-HT1), or migraine (5-HT1). This GPCR subfamily
has also proven to provide drugable targets for other
disease areas such as allergies (H1), asthma (beta2),
ulcers (H2), or hypertension (alpha1 antagonist, beta1
antagonist).

The alpha1 adrenergic receptors are involved in blood
pressure maintenance by modulating the vascular muscle
tone. They are subdivided into the alpha1A, alpha1B
and alpha1D adrenoreceptor subtypes.2 Antagonists of
the alpha1 adrenergic receptors such as indoramin and
prazosin are employed as antihypertensitive agents. In
addition, alpha1A antagonists such as alfuzosin and
prazosin are thought to be effective in the management
of benign prostatic hypertrophy.

Considering the high sequence (and probably struc-
tural) similarity of the ligand binding site of the biogenic
amine binding receptors, this family represents a chal-
lenge for ligand design with respect to the problem of
selectivity. Since GPCRs are membrane-bound proteins,
experimental determination of their 3D structures is
still an extremely difficult task. To gain understanding
into the determinants of molecular recognition at bio-
genic amine binding receptors, we have started to

generate pharmacophore and homology models for the
alpha1A receptor.

Due to lack of crystal structures, traditionally, suc-
cessful computer-aided drug design for GPCRs was
mainly achieved by applying ligand-based modeling
techniques.3,4 Drug discovery based on virtual screening
with rhodopsin-based GPCR models has recently been
reported in the literature.5-11 Although the generation
of a lot of GPCR models is reported in the literature
(e.g. refs 12-22), these models were only used to explain
the binding of known GPCR agonists/antagonists ret-
rospectively. The discovery of novel ligands derived from
structure-based design was, so far, only reported in refs
6 and 9-11. In ref 9, ligand information was used for
the selection and optimization of rhodopsin-based ho-
mology models of the neurokinin-1 (NK1) receptor.
Applying pharmacophore modeling and docking, this
model was successfully used for the discovery of a novel
NK1 antagonist binding in the submicromolar range to
the receptor. Varady et al. reported on an impressive
discovery of novel potent D3 ligands using a hybrid
pharmacophore- and structure-based database search-
ing approach.11 Applying in a stepwise fashion a “hy-
brid” protein- and ligand-based computational approach,
virtual screening was performed. Out of 20 experimen-
tally tested compounds, eight showed Ki values better
than 1 µM.

Encouragingly, in these cases, virtual screening was
successfully applied to rhodopsin-based homology mod-
els of GPCRs belonging to different subfamilies (biogenic
amine and peptide binding GPCRs). Thus, the bovine
rhodopsin crystal structure may be a template of general
relevance for generating GPCR homology models for the
purpose of structure-based drug design.

Here, we describe the generation and validation of a
homology model for the alpha1A receptor. The protein
model was generated using bovine rhodopsin as struc-
tural template. We applied a modified version of the
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MOBILE approach (modelling binding sites including
ligand information explicitly), which models proteins by
homology including information about bound ligands as
restraints, thus resulting in more relevant geometries
of protein binding sites.23 We furthermore considered
mutational and ligand binding data reported in the
literature to obtain only models which are in agreement
with these experimental data. As an ultimate validation
criterion for the relevance of the generated model, we
tested its suitability to discover potent alpha1A antago-
nists. Therefore, we virtually screened the company’s
compound repository and tested the top-scored com-
pounds in an experimental assay.

Results

Generation of a Ligand-Supported Homology
Model of the Alpha1A Receptor. A homology model
of the alpha1A receptor was generated using the bovine
rhodopsin structure determined at 2.8 Å resolution as
template based on the sequence alignment given in
Figure 1. The global sequence identity between the
alpha1A receptor and bovine rhodopsin amounts to only
21%, which is generally considered not to be sufficient
for reliable homology modeling.24,25 When only the
transmembrane region is considered, the identity in-
creases to 27%. However, regarding the proposed bind-
ing pocket as depicted in Figure 2, no sequence identity
is given. Since none of the amino acids in the putative
binding pocket are conserved, the orientations of the
side chains cannot be derived by homology but have to
be predicted de novo with the force field implemented
in the homology modeling program. It was shown
previously that, depending on the composition of the
binding pocket to be modeled, considerable deviations
from the native structure may be obtained.23 We there-
fore applied a modified version of the MOBILE ap-
proach.23 In a first step, a ligand is docked into an
ensemble of crude homology models of the target protein

(paragraph B). In the next step, improved homology
models are generated, explicitly considering the previ-
ously placed ligand. Subsequently, the most favorable
models are selected by ranking the interactions between
the ligand and the generated models. Final models are
obtained by combining the best ranked side-chain
conformers from a set of different models followed by
an energy optimization of the entire complex using a
common force-field (paragraph C).

(A) Generation of a Topographical Interaction
Model for the Alpha1A Receptor. For the generation
and validation of a ligand-supported homology model,
details about the interaction between protein and ligand
should be available. We generated a topographical
interaction model to guide the subsequent homology
modeling process. Through mutational studies and
comparative affinity determinations based on ligand
binding,26-33 essential amino acids involved in antago-

Figure 1. Sequence alignment of bovine rhodopsin (PDB code 1f88) and the alpha1A receptor (Swissprot code A1AA). All residues
comprising the putative binding pocket as given in Figure 2 are marked in gray.

Figure 2. Schematic representation of the postulated interac-
tions between the alpha1A receptor and compound 1 derived
from refs 30 and 31 The arrows indicate proposed key
interactions between the receptor and the ligand.
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nist recognition could be identified. Considering ad-
ditional mutational studies performed on close relatives
of the biogenic amine binding receptor family,27,34-48 we
derived a crude topographical interaction model (see
Figure 2). According to our homology model and these
mutational data, the antagonist binding pocket of the
alpha1A receptor overlaps with the binding site of
retinal in bovine rhodopsin. It is generally accepted for
all biogenic amine binding GPCRs that Asp3.32 (ac-
cording to the Ballesteros-Weinstein nomenclature49)
is involved in binding the biogenic amine group. The
studies of Hamaguchi et al.30,31 furthermore reveal that
Phe2.64, Phe7.39, and Val5.39 are involved in binding
compound 1 as depicted in Figure 2. Ser5.42 and
Ser5.46, which are supposed to be involved in binding
the catechole moieties of adrenaline and epinephrine,28

do not seem to be involved in binding this particular
antagonist. Since not all residues in the alpha1A recep-
tor have been mutated to test their role in ligand
binding and/or receptor activation, a completely vali-
dated 2D picture of the antagonist binding pocket
cannot be provided here. In fact, our homology model
indicates that further residues may be involved in
antagonist binding.

(B) Generation of Initial Alpha1A Homology
Models and Ligand Docking. A set of initial protein
models of the alpha1A receptor was generated by using
MOE (Chemical Computing Group, Montreal, Canada).
In total, 100 different models are obtained reflecting to
some extent the conformational side-chain variability.
In the next step, compound 1 was docked into each
single alpha1A model using GOLD2.050-52 with “stan-
dard default” parameter settings. Since the alpha1A
model was generated by homology based on the rhodop-
sin structure, the modeled E2 loop linking helices 4 and
5 reaches deeply into the putative binding pocket. It was
removed from the models for this preliminary docking
procedure.

To reduce the search space of the docking procedure
and to obtain only docking poses that are in agreement
with the experimental (mutational) data, distance con-

straints were defined according to the interactions
indicated as arrows in the topographical interaction
model given in Figure 2. All resulting complexes were
scored with DrugScore,53 and the best scored ligand pose
was selected after visual inspection.

(C) Generation of Refined Alpha1A Models In-
cluding Ligand Information and Optimization of
the Modeled Protein-Ligand Complexes. In the
following step, 100 new homology models were gener-
ated using MOE. Compound 1 was now considered in
its docked orientation as an additional restraint in this
step of the homology modeling procedure using the
“Environment” option within MOE. The generated
protein-ligand complexes were further refined (for
details, see also ref 23). First, a DrugScore value was
assigned to each binding-site-exposed amino acid (i.e.,
all amino acids within 6 Å distance to the ligand) to
describe the interaction of this amino acid with com-
pound 1. Subsequently, the best scored individual amino
acids from the different models were assembled in a
combinatorial fashion. Finally, the best composite com-
plex model was identified in the following way: Avoid-
ing any intramolecular clashes between individual
amino acid side chains extracted from the different
models, we selected the model that yielded the best total
DrugScore value to the ligand. To relax the composed
model, the entire binding pocket (i.e., all amino acids
within 6 Å distance to the ligand) was minimized with
the MMFF94 force field54 available in MOE (using
default parameters), keeping ligand and binding-site
residues flexible. The E2 loop was added to the model
in the orientation adopted from bovine rhodopsin. As
clashes with the docked ligand were observed, all loop
atoms were minimized while the ligand and the rest of
the protein were kept fixed. This procedure moved the
loop away from the ligand and expanded the putative
ligand binding site.

(D) Description of the Alpha1A Receptor Model.
The complex of the alpha1A receptor model is depicted
in Figure 3a. The proposed interactions (as suggested
by the interaction model, Figure 2) are displayed as

Figure 3. (a) Homology model of the alpha1A receptor complexed with compound 1. The dashed lines indicate the key interactions
as depicted in Figure 2. (b) The piperidine moiety that was used as “template similarity constraint” during the docking procedure
of the virtual screening.
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dashed lines. As mentioned above, there is no sequence
identity between the alpha1A receptor and bovine
rhodopsin in the assumed antagonist binding pocket.
Since we applied homology modeling, the backbone trace
of the alpha1A model is kept with similar conformation
to the rhodopsin template, whereas the arrangement of
the side chains of the binding-site residues is predomi-
nantly determined by the docked binding mode of
compound 1. The final spatial arrangement of the
binding-site residues agrees well with the topographic
interaction model depicted in Figure 2. Analysis of the
modeled complex reveals that Asp3.32 constitutes a
central anchoring point for ligands and divides the
binding site into two different subpockets. The sub-
pocket defined by helices 4-7 consists of amino acids
offering hydrophobic side chains (Val5.39, Phe6.51,
Phe6.52, Met6.55, Phe7.35, and Phe7.39). Similarly, the
second subpocket is formed by mainly aromatic residues
contributed by helices 1-3, and 7 (Phe2.60, Phe2.64,
Trp3.28, Phe7.35, and Phe7.39).

These characteristics of the binding pocket are im-
plicitly reflected by two ligand-based pharmacophore
models that were generated on the basis of a diverse
set of known alpha1A receptor antagonists (see Figure
4).55 These models describe and predict alpha1A affinity
across several different chemotypes. Pharmacophore
model “class II” (Figure 4b) contains a central positively
ionizable pharmacophoric element (interacting with
Asp3.32). The hydrophobic subpockets of the antagonist
binding site are addressed by the hydrophobic and

aromatic pharmacophoric features. Some alpha1A an-
tagonists contain an additional hydrogen-bond acceptor,
which is reflected by pharmacophore model “class I”. A
possible interaction partner for this acceptor is (accord-
ing to our model) Lys7.36. However, this assumption is
only speculative, since no mutational data are available
and analysis of known ligand SAR does not conclusively
suggest an essential role of this pharmacophoric ele-
ment.

Evaluation of Different Scoring Functions. Fol-
lowing a similar approach as described by Bissantz et
al.,7 we evaluated different scoring functions using an
MDDR data set that is composed of 990 drug-like
molecules and 50 embedded alpha1A antagonists (see
Methods). All compounds of the test set were docked
into the homology model with GOLD (applying “7-8
times speed-up” parameter setting) and scored with nine
different scoring functions [DrugScore,53 GoldScore,51

Xscore,56 XCScore57 and D_Score,58 G_Score,51 Chem-
Score,59 PMF,60 and F_Score61 as implemented in the
Cscore module of Sybyl6.92 (Tripos Associates, Inc., St.
Louis, MO, 2001)]. Again, to include experimentally
derived knowledge about the interaction of piperidines
with the receptor into the docking procedure, the
piperidine moiety of docked compound 1 has been
defined as a “template similarity constraint” as depicted
in Figure 3b. This guides the docking of ligands that
contain piperidines or similar groups toward binding
poses found for compound 1. Furthermore, we defined
a “protein hydrogen-bond constraint” with one of the
carboxylate oxygen atoms of Asp3.32. In Figure 5,
enrichments plots obtained with different scoring func-
tions are depicted. Table 1 lists the enrichment factors
obtained when analyzing the top 1%, 5%, and 10% of
the scored data set. For the applied data set, the best
results are obtained when PMF60 is used as scoring
function, providing an up to 13-fold hit rate than a
random selection. An overview over the compounds
retrieved as the top 10 is given in Table 2. Among these,
six are alpha1A antagonists. From the remaining four
compounds, two are registered as antidepressants bind-
ing to the 5HT1A receptor, a biogenic amine receptor
closely related to the alpha1A receptor. The affinity of
these compounds on the alpha1A receptor is not known.

Figure 4. Catalyst pharmacophore models used for virtual
screening of the Aventis compound repository. Shown are the
two pharmacophore models (class I and class II) mapping two
different classes of high-affinity ligands of the alpha1A recep-
tor.

Figure 5. Enrichment of alpha1A antagonists obtained from
nine different scoring functions.
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Virtual Screening for Novel Alpha1A Antago-
nists. For the validation of our alpha1A receptor model,
we tested how well it is suited for the discovery of novel
alpha1A antagonists. Therefore, the company’s com-
pound repository was virtually screened to retrieve
putative alpha1A receptor antagonists. Similarly to
other previous virtual screening experiments described
in the literature (i.e. refs 11, 62, 63), the search has been
performed in a stepwise fashion using hierarchical
filters of increasing complexity with respect to their
computational requirements. As an initial step, a rather
unspecific and target-independent filter was applied:
Only compounds with up to nine rotatable bonds and a
molecular mass of less than 600 Da have been consid-
ered. This avoids highly flexible ligands that could
possibly (1) experience reduced binding affinity due to
entropic considerations and (2) increase the complexity
and thus reduce the success rate of the attempted 3D
searches. In the second step, compounds fulfilling the
pharmacophoric requirements of known alpha1A recep-
tor antagonists (Figure 4)55 were identified with Cata-
lyst. 22 950 compounds were selected and docked into
the binding site of our alpha1A homology model using
GOLD with the same settings as applied for the MDDR
data set. All docking solutions were rescored with PMF.

The top-scoring 300 compounds were clustered ac-
cording to their UNITY fingerprint similarity (Tripos
Associates, Inc., St. Louis, MO, 2001), and a diverse set
of 80 compounds was submitted for experimental testing
using a radioligand displacement assay. From these, 38
compounds showed percent inhibition values >50% at
10 µM. These compounds were submitted for Ki value
determination. Figure 6 and Table 4 give an overview
of the number of compounds binding at different affinity
ranges to the alpha1A receptor. Thirty-seven compounds
showed affinity below 10 µM. Twenty-four compounds
exhibit binding in the submicromolar range, 10 of these
under 100 nM and three compounds even below 10 nM
(see Table 3). Table 4 shows the 2D structures of four
representative strong binders retrieved by virtual screen-
ing. Docking modes of these compounds are depicted in
Figure 7. The hit list from the virtual screening contains
compounds with scaffolds of known alpha1A antago-
nists, for example, compound 12, which is an analogue
of the known alpha1A antagonist 5-methylurapidil. It
binds with Ki ) 3.6 nM at the alpha1A receptor.
According to our docking mode (see Figure 7a), the
methoxyphenyl moiety addresses the hydrophobic sub-
pocket defined by amino acids from helices 3-6. Here,
the 2,6-dichlorophenyl moiety establishes aromatic-
aromatic stacking interactions with the side chains of
Trp3.28 and Phe2.64. As mentioned before, Phe2.64 was

shown to be involved in binding several alpha1A an-
tagonists by Hamaguchi et al.30,31

The docking mode of the most active compound
identified by virtual screening, compound 13, is given
in Figure 7b. Interestingly, this class of compounds has
been developed as antagonist of the dopaminergic D3
receptor.64 Again, aromatic interactions of the pyrimi-
dine ring with Trp3.28 and Phe2.64 are observed in our
complex model. In addition, the N3 atom of the pyri-
midine ring is in close distance to the hydroxyl group
of Ser2.61, allowing for the formation of a hydrogen
bond. A further hydrogen bond is possibly established
between the amide oxygen atom of the ligand and
Lys7.36 of the receptor. Interestingly, as mentioned
before, this hydrogen-bond-acceptor functionality is also
found as a pharmacophoric feature in the ligand-based
alpha1A pharmacophore model “class I” (Figure 4).55

Since this functionality is observed in compounds 13 and
15, it may indeed be a feature that is not absolutely
required but beneficial for strong binding to the alpha1A
receptor. Ligands similar to compound 15 (Figure 7d)
have already been reported to bind against the 5HT1A
receptor, a further biogenic amine receptor. Like com-
pound 13, compound 15 could establish a hydrogen bond
to Ser2.61 via its terminal amino group, suggesting an
important role of this amino acid for binding these
compounds. Mutational data addressing the role of
Ser2.61 in ligand binding have not been reported in the
literature. However, it was shown by mutational studies
that the amino acid in the corresponding position of the
dopamine D4 receptor (Phe2.61) is important for the
binding of several antagonists.48 In addition to series
with known activity on the alpha1A receptor or other
biogenic amine receptors, we also identified novel
alpha1A scaffolds by our virtual screening approach, for
example, compound 14 (Figure 7c). Whereas the ethyl-
benzene “tail” which is pointing toward helix 2 is often
observed in alpha1A structures, the dioxolan “head”
directed toward helices 5 and 6 represents a scaffold
known from the fungicide field. Interestingly, according
to our docking mode, the piperazine group of compound
14 assumes a different orientation in the alpha1A
binding pocket from that of compounds 1, 12, 13, and
15.

Discussion

In this contribution, we presented the generation of
a 3D homology model for the alpha1A receptor based
on the rhodopsin X-ray structure and successful virtual
screening of the company’s compound repository. From
the 80 top-scored hits, 37 revealed affinity below 10 µM,
with 24 compounds binding in the submicromolar range.
The most potent hit revealed an affinity of 1.4 nM.
Among the virtual hits, several ligands represent struc-
tural classes that have not been reported as alpha1A
antagonists before.

Our approach, which can in principle be applied to
any member of the GPCR family with known ligand
information and site-directed mutagenesis data, is based
on Catalyst pharmacophore models and a homology
model generated from the crystal structure of bovine
rhodopsin as structural template. It is widely discussed
whether bovine rhodopsin is a proper template for
homology models of GPCRs.65 It is clear that it is the

Table 1. Enrichments of Active Compounds Embedded into a
Database of 50 Alpha1A Antagonists and 990 Further Druglike
Molecules Extracted from the MDDRa,b

scoring
function 1% 5% 10%

scoring
function 1% 5% 10%

PMF_Score 13.1 5.4 4.1 D_Score 0.0 0.4 0.2
XScore 0.0 0.0 0.0 F_Score 0.0 1.2 1.8
ChemScore 0.0 0.4 0.6 G_Score 0.0 0.0 0.0
GoldScore 0.0 1.2 2.9 DrugScore 0.0 0.8 1.6
XScore 0.0 0.0 0.0 Ideal 20.6 19.8 10.0

a For details, see Materials and Methods. b Enrichments of the
alpha1A antagonists are given at 1%, 5%, and 10% of the screened
test database.
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only reasonable template since it is the only GPCR
resolved to sufficient resolution, but it remains to be
proven whether its use results in homology models
reliable enough for structure-based drug design. Re-
garding only the putative antagonist binding site of the

alpha1A receptor, no sequence identity to bovine rhodop-
sin is given. This fact points to uncertainties in modeling
GPCR binding pockets on the basis of the bovine
rhodopsin structure. Usually, if sequence identity falls
beyond 35%, the accuracy of any produced homology
model is considered insufficient to allow for virtual
screening and docking of small ligands.24,25 Whereas
among related globular proteins, the ligand binding site
is generally more conserved for related proteins than
their entire fold, the opposite holds for GPCRs.66 Fur-
thermore, the E2-loop, which links helix 4 with helix 5,
is an integral part of the retinal binding site and it was
shown by mutational studies (i.e. refs 27, 47, 67) to
possibly be involved in ligand binding for the biogenic
amine receptors. The loop is probably “fixed” by a highly
conserved disulfide bridge. But since this loop is variable
in length and amino acid composition, it must be
assumed that it adopts conformations different from
that observed in the rhosopsin crystal structure.65 For

Table 2. Compounds Retrieved among the Ten Best Scored Compounds of the MDDR Test Data Seta

a Shown are the structures and the biological activity as stated in the MDDR.

Figure 6. Overview of affinity ranges of alpha1A antagonists
identified by virtual screening. From 37 hits discovered by
virtual screening, 13 compounds were binding in the range
between 10 and 1 µM, 14 compounds showed affinity between
1 µM and 100 nM, seven compounds were binding between
100 and 10 nM, and three compounds showed affinity between
1 and 10 nM.

Table 3. Overview of Affinity Ranges of Alpha1A Antagonists
Identified by Virtual Screening

no. of
compds hit rate, %

Ki < 10 µM 37 46.8
Ki < 1 µM 24 30
Ki < 100 nM 10 12.5
Ki < 10 nM 3 3.8
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the virtual screening, we decided to keep the loop in the
model, since preliminary docking studies of the MDDR
data set (data not shown) revealed that better enrich-
ments of active compounds among the top scorers are
obtained when the E2-loop is included. Visual analysis
of docking modes revealed that neglect of the loop
provokes docking solutions of large, highly flexible
“inactive” compounds that are artificially oriented into
the unoccupied region. These ligands establish ad-
ditional artificial interactions with amino acids beyond
the E2-loop, resulting in better scores and, thus, higher
enrichment rates of false positives among the top
scorers.

Of course, these uncertainties justify the debate
whether homology modeling is the appropriate method
for generating GPCR models of an accuracy sufficient
for drug design. We cannot state how close the putative
antagonist binding pocket of the presented alpha1A
homology model is to reality. However, we have shown
that our model is in agreement with experimental
(mutational and ligand SAR) data and it is of suited
quality for finding novel ligands by structure-based drug
design. The fact that further successful applications of
GPCR homology models for virtual screening have
recently been reported in the literature (e.g. refs 5-9,
11, 68) supports the assumption that bovine rhodopsin
provides a useful template structure. However, at this
point it should be mentioned that the success rate of a
virtual screening approach not only depends on the
quality of the protein structure but also on the applied
screening method and the composition of the screened
compound collection. If a compound collection does not
contain any active compounds for the actual target or
an unsuited combination of docking program and scor-
ing function is used, the resulting hit rate will be low,
even if a crystal structure of the target protein is

available. Still, we are convinced that a large contribu-
tion to the success rate of the presented virtual screen-
ing must be attributed to the quality of the homology
model and the fact that it has been refined and validated
using ligand (SAR) and mutational data. Without
experimental validation data, these computational GPCR
homology models possibly lack the accuracy needed to
apply them within the GPCR drug discovery process.

Furthermore, it must be noted that precise affinity
predictions are not feasible on the basis of GPCR
homology models. Limitations may surely arise from
inaccuracies of the model. In addition, the currently
available scoring functions are still considered to be
inapplicable for accurate affinity prediction, even if the
molecular protein-ligand interactions are available
from crystal structures.56,69 On the contrary, it was also
shown that docking programs and scoring functions are
well-suited for generating near-native ligand binding
poses in protein binding sites. Thus, our homology model
could be used as structural basis to generate relevant
binding poses and ligand alignments in the alpha1A
binding pocket useful for the subsequent generation of
3D-QSAR models as described in refs 12, 70, and 71.
Indeed, we were able to generate significant 3D-QSAR
models from docking modes of alpha1A antagonists
covering different chemotypes. Such models allow for a
reliable affinity prediction within these chemical series.
In addition, the good agreement between contour maps
obtained from such 3D-QSAR models and the protein
model confirms the relevance of both models and allows
for an easy interpretation of the features that are
important for binding.

Besides serving as a structural platform for structure-
based drug design, a further potential application of our
generated alpha1A homology model is to serve as a
structural template for homology modeling of further
members of the biogenic amine receptor family. Since
significant sequence conservation is observed in the
putative antagonist binding pocket within this subfam-
ily of GPCRs, our validated alpha1A homology model
presents an appropriate structural template. Combined
with docking modes of selective ligands, the homology
models of closely related biogenic amine binding GPCRs
could ideally be used to determine which amino acids
are potentially important for selectivity.

Indeed, the central role that many of these biogenic
amine binding GPCRs play in cell signaling also poses
a risk for new drug candidates that reveal side affinities
toward these receptor sites: These candidates have the
potential to interfere with the physiological signaling
process and to cause undesired effects in preclinical or
clinical studies. As the alpha1A receptor is involved in
blood pressure maintenance by modulating the vascular
muscle tone, it is not only a molecular target for
antihypertensitives (e.g. prazosine). It has also been
suggested as an “antitarget” that mediates cardiovas-
cular side effects of many GPCR drug candidates,
causing orthostatic hypotension, dizziness, and fainting
spells.72 In our company, we have established biogenic
amine receptor binding assays to monitor affinities of
new GPCR drug candidates and to predict negative side
effects of compounds during lead optimization. Surpris-
ingly, many of the hit and lead compounds developed
for chemokine or peptide binding GPCRs reveal affini-

Table 4. List of Four Selected Hits Discovered by Virtual
Screening
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ties toward several members of the biogenic amine
“antitarget” panel. To eliminate side affinities toward
these antitargets, a general understanding of the fea-
tures important for binding of ligands to these GPCRs
is necessary. This study demonstrates that the pre-
sented alpha1A receptor homology model provides a
relevant structural basis for rationalizing alpha1A
receptor binding. Combined with ligand-based pharma-
cophore models and 3D-QSAR modeling, the homology
model will guide the compound optimization within
projects toward development candidates with an im-
proved safety profile.

Materials and Methods

Test Data Set. To establish the best protocol for the virtual
screening procedure, we compiled a test set extracted from the
MDL Drug Data Report (MDDR). The MDDR is an annotated
database covering the patent literature, journals, meetings,
and congresses that contains over 141 000 biologically relevant
compounds and well-defined derivatives such as drugs launched
or in development phase. We extracted a test set consisting of
50 alpha1A antagonists and 990 further compounds that were
not stated as alpha1A antagonists. The performance of differ-
ent virtual screening protocols evaluating different scoring
functions was assessed by calculating the enrichment of
alpha1A antagonists among the top-scored compounds. It
cannot be excluded that some of the randomly selected 990
decoy compounds that were not (explicitly) marked as alpha1A
blockers actually reveal (side) affinity against the alpha1A
receptor. Nevertheless, the enrichment values appear to be
useful criteria to benchmark different scoring functions for a
particular protein to select the optimal protocol for a subse-
quent virtual screening.

The effectiveness of the scoring functions ability to assign
high ranks to alpha1A antagonists is reported in terms of

enrichment factors in graphical and tabular form. The enrich-
ment factor is represented by

where EF is the enrichment factor,
Hitssampled is the number of true hits in the hit list,
Nsampled is the number of compounds in the hit list,
Hitstotal is the number of hits in the full database, and
Ntotal is the number of compounds in the full database.
Testing for Binding. Alpha1A receptor binding assay was

performed as described.73 Briefly, the binding of [3H]prazosine
(0.5 nM, supplier NEN) to human recombinant alpha1A
receptor in CHO-K1 cell membranes (30.4 µg/well) was mea-
sured after incubation for 40 min at 37 °C in 200 µL of 50 mM
Tris/HCl (pH 7.7). Binding reactions were terminated by
filtration through Millipore GF/B filter plates, and radioactiv-
ity was determined with a liquid scintillation counter (Perkin-
Elmer). For all 80 hits from the virtual screening, double
determinations were done at 10 µM. For those compounds that
showed more than 50% inhibition, IC50 values were calculated
from the averages of double determinations at eight different
concentrations. Ki values were determined from the IC50 and
Kd values of the radioligand by using the Cheng-Prusoff
equation.
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